Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
J Appl Microbiol ; 132(4): 3405-3415, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-2302536

ABSTRACT

AIMS: The purpose of this study was to evaluate the effects of ambient or altered environmental conditions on the inactivation of SARS-CoV-2 applied to materials common in libraries, archives and museums. METHODS AND RESULTS: Porous and non-porous materials (e.g. paper, plastic protective book cover) were inoculated with approximately 1 × 105 TCID50 SARS CoV-2 (USA-WA1/2020), dried, placed within test chamber in either a stacked or unstacked configuration, and exposed to environmental conditions ranging from 4 to 29°C at 40 ± 10% relative humidity. The amount of infectious SARS-CoV-2 was then assessed at various timepoints from 0 to 10 days. Ambient conditions resulted in varying inactivation rates per material type. Virus inactivation rate decreased when materials were stacked or at colder temperatures. Virus inactivation rate increased when materials were unstacked or at warmer temperatures. CONCLUSIONS: SARS-CoV-2 at ambient conditions resulted in the inactivation of virus below limit of quantitation (LOQ) for all materials by Day 8. Warmer temperatures, for a subset of materials, increased SARS-CoV-2 inactivation, and all were

Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Humans , Museums , Virus Inactivation
2.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2278306

ABSTRACT

AIMS: The purpose of this study was to evaluate the efficacy of steam heat for inactivation of SARS-CoV-2 when applied to materials common in mass transit installations. METHODS AND RESULTS: SARS CoV-2 (USA-WA1/2020) was resuspended in either cell culture media or synthetic saliva, inoculated (∼1 × 106 TCID50) onto porous and nonporous materials and subjected to steam inactivation efficacy tests as either wet or dried droplets. The inoculated test materials were exposed to steam heat ranging from 70°C to 90°C. The amount of infectious SARS-CoV-2 remaining after various exposure durations ranging from 1 to 60 s was assessed. Higher steam heat application resulted in higher inactivation rates at short contact times. Steam applied at 1-inch distance (∼90°C at the surface) resulted in complete inactivation for dry inoculum within 2 s of exposure (excluding two outliers of 19 test samples at the 5-s duration) and within 2-30 s of exposure for wet droplets. Increasing the distance to 2 inches (∼70°C) also increased the exposure time required to achieve complete inactivation to 15 or 30 s for materials inoculated with saliva or cell culture media, respectively. CONCLUSIONS: Steam heat can provide high levels of decontamination (>3 log reduction) for transit-related materials contaminated with SARS-CoV-2 using a commercially available steam generator with a manageable exposure time of 2-5 s.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Hot Temperature , Steam , Decontamination/methods
3.
J Appl Microbiol ; 134(5)2023 May 02.
Article in English | MEDLINE | ID: covidwho-2278305

ABSTRACT

AIMS: The purpose of this study was to evaluate the effects of altered environmental conditions, specifically elevated temperature at various levels of expected relative humidity (RH), on the inactivation of SARS-CoV-2 when applied to U.S. Air Force aircraft materials. METHODS AND RESULTS: SARS CoV-2 (USA-WA1/2020) was spiked (∼1 × 105 TCID50) in either synthetic saliva or lung fluid, dried onto porous (e.g. Nylon strap) and nonporous materials (e.g. bare aluminum, silicone, and ABS plastic), placed in a test chamber and exposed to environmental conditions ranging from 40 to 51.7 °C and RH ranging from 0% to 50%. The amount of infectious SARS-CoV-2 was then assessed at various timepoints from 0 to 2 days. Warmer test temperatures, higher RH, and longer exposure duration resulted in higher inactivation rates per material type. Synthetic saliva inoculation vehicle was more readily decontaminated compared to materials inoculated with synthetic lung fluid. CONCLUSIONS: SARS-CoV-2 was readily inactivated below limit of quantitation (LOQ) for all materials inoculated using synthetic saliva vehicle within 6 hours when exposed to environmental conditions of 51.7 °C and RH ≥ 25%. Synthetic lung fluid vehicle did not follow the general trend of an increase in RH resulting in increased efficacy. The lung fluid performed best at the 20%-25% RH range to achieve complete inactivation below LOQ.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Decontamination/methods , Plastics , Humidity
4.
Sci Total Environ ; 876: 162704, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2274002

ABSTRACT

The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics.


Subject(s)
Anti-Infective Agents , COVID-19 , Ozone , Mice , Animals , Humans , COVID-19/prevention & control , SARS-CoV-2 , Decontamination/methods , Staphylococcus aureus , Pandemics/prevention & control , Disinfection/methods
5.
J Biophotonics ; 16(4): e202200306, 2023 04.
Article in English | MEDLINE | ID: covidwho-2274877

ABSTRACT

COVID-19 appeared in December 2019, needing efforts of science. Besides, a range of light therapies (photodynamic therapy, ultraviolet [UV], laser) has shown scientific alternatives to conventional decontamination therapies. Investigating the efficacy of light-based therapies for environment decontamination against SARS-CoV2, a PRISMA systematic review of Phototherapies against SARS-CoV or MERS-CoV species discussing changes in viral RT-PCR was done. After searching MEDLINE/PubMed, EMBASE, and Literatura Latino-Americana e do Caribe em Ciências da Saúde we have found studies about cell cultures irradiation (18), blood components irradiation (10), N95 masks decontamination (03), inanimate surface decontamination (03), aerosols decontamination (03), hospital rooms irradiation (01) with PDT, LED, and UV therapy. The best quality results showed an effective low time and dose UV irradiation for environments and inanimate surfaces without human persons as long as the devices have safety elements dependent on the surfaces, viral charge, humidity, radiant exposure. To interpersonal contamination in humans, PDT or LED therapy seems very promising and are encouraged.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Decontamination/methods , RNA, Viral , Phototherapy , Ultraviolet Rays
6.
Health Secur ; 21(1): 11-21, 2023.
Article in English | MEDLINE | ID: covidwho-2222541

ABSTRACT

Early in the COVID-19 pandemic, substantial disruptions in personal protective equipment (PPE) supply chains forced healthcare systems to become resourceful to ensure PPE availability for healthcare workers. Most worrisome was the global shortage of N95 respirators. In response, a collaboration between the Department of Infection Control and Healthcare Epidemiology and the Department of Biosafety at the University of Texas Medical Branch developed a PPE recycling program guaranteeing an adequate supply of respirators for frontline staff. The team successfully developed and implemented a novel workflow that included validated decontamination procedures, education, and training programs as well as transportation, labeling, and storage logistics. In total, 15,995 respirators of various types and sizes were received for recycling. Of these, 12,752 (80%) were recycled. Following the program's implementation, we surveyed 134 frontline healthcare workers who overwhelmingly graded our institution's culture of safety positively. Overall impressions of the N95 respirator recycling program were mixed, although interpretation of those results was limited by a lower survey response rate. In an era of increasing health security threats, innovative recycling programs like this one may serve as a model for other health systems to respond to future PPE supply chain disruptions.


Subject(s)
COVID-19 , Humans , N95 Respirators , SARS-CoV-2 , Decontamination/methods , Pandemics , Health Personnel
7.
PLoS One ; 18(1): e0280426, 2023.
Article in English | MEDLINE | ID: covidwho-2214800

ABSTRACT

OBJECTIVE: While facing personal protective equipment (PPE) shortages during the COVID-19 pandemic, several institutions looked to PPE decontamination and reuse options. This study documents the effect of two hydrogen peroxide treatments on filtration efficiency and fit tests as well as the side effects for volunteers after the decontamination of N95 filtering facepiece respirators (FFRs). We also propose an efficient and large-scale treatment protocol that allows for the traceability of this protective equipment in hospitals during PPE shortages. METHODS: The effects of low-temperature hydrogen peroxide sterilization and hydrogen peroxide vapor (HPV) on two FFR models (filtration, decontamination level, residual emanation) were evaluated. Ten volunteers reported comfort issues and side effects after wearing 1h FFRs worn and decontaminated up to five times. RESULTS: The decontamination process does not negatively affect FFR efficiency, but repeated use and handling tend to lead to damage, limiting the number of times FFRs can be reused. Moreover, the recommended 24-h post-treatment aeration does not sufficiently eliminate residual hydrogen peroxide. Prolonged aeration time increased user comfort when using decontaminated FFRs. CONCLUSIONS: HPV and low-temperature hydrogen peroxide sterilization seem to be appropriate treatments for FFR decontamination when the PPE is reused by the same user. PPE decontamination and reuse methods should be carefully considered as they are critical for the comfort and safety of healthcare workers.


Subject(s)
COVID-19 , Papillomavirus Infections , Respiratory Protective Devices , Humans , Hydrogen Peroxide , Decontamination/methods , Pandemics , Equipment Reuse , Personal Protective Equipment
8.
Sci Total Environ ; 866: 161455, 2023 Mar 25.
Article in English | MEDLINE | ID: covidwho-2165841

ABSTRACT

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), and the resulting coronavirus disease (COVID-19), was declared a public health emergency of global concern by the World Health Organization (WHO) in the early months of 2020. There was a marked lack of knowledge to inform national pandemic response plans encompassing appropriate disease mitigation and preparation strategies to constrain and manage COVID-19. For example, the top 16 "most cited" papers published at the start of the pandemic on core knowledge gaps collectively constitute a staggering 29,393 citations. Albeit complex, appropriate decontamination modalities have been reported and developed for safe reuse of personal and protective equipment (PPE) under emergency use authorization (EUA) where critical supply chain shortages occur for healthcare workers (HCWs) caused by the COVID-19 pandemic. Commensurately, these similar methods may provide solutions for the safe decontamination of enormous volumes of PPE waste promoting opportunities in the circular bioeconomy that will also protect our environment, habitats and natural capital. The co-circulation of the highly transmissive mix of COVID-19 variants of concern (VoC) will continue to challenge our embattled healthcare systems globally for many years to come with an emphasis placed on maintaining effective disease mitigation strategies. This viewpoint article addresses the rationale and key developments in this important area since the onset of the COVID-19 pandemic and provides an insight into a variety of potential opportunities to unlock the long-term sustainability of single-use medical devices, including waste management.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Decontamination/methods , Personal Protective Equipment
10.
Appl Environ Microbiol ; 88(19): e0122122, 2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2038232

ABSTRACT

The objective of this study was to evaluate the effectiveness of UV technology for virus disinfection to allow FFR reuse. UV is a proven decontamination tool for microbial pathogens, including the SARS-CoV-2 virus. Research findings suggest that the impacts of UV-C treatment on FFR material degradation should be confirmed using microbial surrogates in addition to the commonly performed abiotic particle testing. This study used the surrogates, E. coli and MS-2 bacteriophage, as they bracket the UV response of SARS-CoV-2. Lower log inactivation was observed on FFRs than predicted by aqueous-based UV dose-response data for MS-2 bacteriophage and E. coli. In addition, the dose-response curves did not follow the trends commonly observed with aqueous data for E. coli and MS-2. The dose-response curves for the respirators in this study had a semicircle shape, where the inactivation reached a peak and then decreased. This decrease in UV inactivation is thought to be due to the degradation of the fibers of the FFR and allows for more viral and bacterial cells to wash through the layers of the respirator. This degradation phenomenon was observed at UV doses at and above 2,000 mJ/cm2. Results have demonstrated that FFR materials yield various results in terms of effective disinfection in experiments conducted on KN95 and N95 face respirators. The highest inactivation for both surrogates was observed with the KN95 respirator made by Purism, yielding 3 and 2.75 log inactivation for E. coli and MS-2 at UV doses of 1,500 mJ/cm2. The KN95 made by Anboruo yielded the lowest inactivation for MS-2 at 0.75 log when exposed to 1,000 mJ/cm2. To further test the degradation theory, experiments used a collimated beam device to test the hypothesis further that degradation is occurring at and above UV doses of 1,500 mJ/cm2. The experiment aimed to determine the effect of "predosing" a respirator with UV before inoculating the respirator with MS-2. In this test, quantification of the penetrated irradiance value and the ability of each layer to retain MS-2 were quantified. The results of the experiments varied from the intact FFR degradation experiments but displayed some data to support the degradation theory. IMPORTANCE Research suggests degradation of FFR materials at high UV doses is important. There appears to be a peak inactivation dose at approximately 1,500 mJ/cm2. The subsequent dose increases appear to have the reverse effect on inactivation values; these trends have shown true with both the N95 and KN95-Purism respirators.


Subject(s)
COVID-19 , Disinfection , COVID-19/prevention & control , Decontamination/methods , Disinfection/methods , Escherichia coli , Humans , N95 Respirators , SARS-CoV-2 , Ultraviolet Rays , Ventilators, Mechanical
11.
J Occup Environ Hyg ; 19(10-11): 663-675, 2022.
Article in English | MEDLINE | ID: covidwho-2028921

ABSTRACT

The COVID-19 pandemic has affected the world and caused a supply shortage of personal protection equipment, especially filtering facepiece respirators (FFP). This has increased the risk of many healthcare workers contracting SARS-CoV-2. Various strategies have been assessed to tackle these supply issues. In critical shortage scenarios, reusing single-use-designed respirators may be required. Thus, an easily applicable and reliable FFP2 (or alike) respirator decontamination method, allowing safe re-use of FFP2 respirators by healthcare personnel, has been developed and is presented in this study. A potent and gentle aerosolized hydrogen peroxide (12% wt) method was applied over 4 hr to decontaminate various brands of FFP2 respirators within a small common room, followed by adequate aeration and storage overnight. The microbial efficacy was tested on unused respirator pieces using spores of Geobacillus stearothermophilus. Further, decontamination effectiveness was tested on used respirators after one 12-hr shift by swabbing before and after the decontamination. The effects of up to ten decontamination cycles on the respirators' functionality were evaluated using material properties, the structural integrity of the respirators, and fit tests with subjects. The suggested H2O2 decontamination procedure was proven to be (a) sufficiently potent (no microbial recovery, total inactivation of biological indicators as well as spore inoculum on critical respirator surfaces), (b) gentle as no significant damage to the respirator structural integrity and acceptable fit factors were observed, and (c) safe as no H2O2 residue were detected after the defined aeration and storage. Thus, this easy-to-implement and scalable method could overcome another severe respirator shortage, providing enough flexibility to draft safe, effective, and logistically simple crisis plans. However, as highlighted in this study, due to the wealth of design and material used in different models and brands of respirators, the decontamination process should be validated for each FFP respirator model before its field implementation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Ventilators, Mechanical
12.
mSphere ; 7(5): e0030322, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2019746

ABSTRACT

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Subject(s)
COVID-19 , N95 Respirators , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Hydrogen Peroxide/pharmacology , SARS-CoV-2 , Virus Inactivation , Decontamination/methods , Feasibility Studies , RNA, Viral , Equipment Reuse
13.
Lett Appl Microbiol ; 75(6): 1639-1644, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019532

ABSTRACT

This study aimed to evaluate the performance of accelerated hydrogen peroxide® wipes (HPW) for decontamination of the chimpanzee adenovirus AZD1222 vaccine strain used in the production of recombinant COVID-19 vaccine in a pharmaceutical industry. Two matrices were tested on stainless-steel (SS) and low-density-polyethylene (LDP) surfaces: formulated recombinant COVID-19 vaccine (FCV) and active pharmaceutical ingredient (API). The samples were spiked, dried and the initial inoculum, possible residue effect (RE) and titre reduction after disinfection with HPW were determined. No RE was observed. The disinfection procedure with HPW resulted in complete decontamination the of AZD1222 adenovirus strain in FCV (≥7·46 and ≥7·49 log10 infectious unit [IFU] ml-1 for SS and LDP carriers respectively) and API (≥8·79 and ≥8·78 log10 IFU ml-1 for SS and LDP carriers respectively). In conclusion, virucidal activity of HPW was satisfactory against the AZD1222 adenovirus strain and can be a good option for disinfection processes of SS and LPD surfaces in pharmaceutical industry facilities during recombinant COVID-19 vaccine production. This procedure is simple and can be also applied on safety unit cabins and sampling bags made of LDP as well.


Subject(s)
COVID-19 , Disinfectants , Humans , Hydrogen Peroxide/pharmacology , Disinfectants/pharmacology , ChAdOx1 nCoV-19 , COVID-19 Vaccines , Adenoviridae/genetics , Decontamination/methods , COVID-19/prevention & control , Disinfection/methods , Stainless Steel , Drug Industry
14.
Am J Infect Control ; 50(8): 857-862, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000224

ABSTRACT

BACKGROUND: Global shortage of personal protective equipment (PPE), as consequence of the COVID-19 global pandemic, has unmasked significant resource inequities prompting efforts to develop methods for safe PPE decontamination for reuse. The World Health Organization (WHO) in their Rational Use of PPE bulletin cited the use of a photodynamic dye, methylene blue, and light exposure as a viable option for N95 respirator decontamination. Because WHO noted that methylene blue (MB) would be applied to surfaces through which health care workers breathe, we hypothesized that little to no MB will be detectable by spectroscopy when the PPE is subjected to MB at supraphysiologic airflow rates. METHODS: A panel of N95 respirators, medical masks, and cloth masks were sprayed with 5 cycles of 1,000 uM MB solution. Mask coupons were subjected to the equivalent of 120 L/min of 100% humidified air flow. Effluent gas was trapped in an aqueous solution and the resultant fluid was sampled for MB absorbance with a level of detection of 0.004 mg/m3. RESULTS: No detectable MB was identified for any mask using Ultraviolet-Visible spectroscopy. CONCLUSIONS: At 500-fold the amount of MB applied to N95 respirators and medical masks as were used for the decontamination study cited in the WHO Rational Use of PPE bulletin, no detectable MB was observed, thus providing safety evidence for the use of methylene blue and light exposure for mask decontamination.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Methylene Blue , N95 Respirators
15.
Am J Infect Control ; 50(8): 863-870, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000222

ABSTRACT

BACKGROUND: The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma. Decontamination of respirators using photoactivated MB requires no specialized equipment, making it attractive for use in the field during outbreaks. METHODS: We examined decontamination of N95 and KN95 respirators using photoactivated MB and 3 variants of SARS-CoV-2, the virus that causes COVID-19; and 4 World Health Organization priority pathogens: Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Lassa virus. Virus inactivation by pretreating respirator material was also tested. RESULTS: Photoactivated MB inactivated all tested viruses on respirator material, albeit with varying efficiency. Virus applied to respirator material pre-treated with MB was also inactivated, thus MB pretreatment may potentially protect respirator wearers from virus exposure in real-time. CONCLUSIONS: These results demonstrate that photoactivated MB represents a cost-effective, rapid, and widely deployable method to decontaminate N95 respirators for reuse during supply shortages.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Middle East Respiratory Syndrome Coronavirus , Nipah Virus , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Hemorrhagic Fever, Ebola/prevention & control , Humans , Methylene Blue/pharmacology , N95 Respirators , Pandemics/prevention & control , SARS-CoV-2 , Ventilators, Mechanical
16.
Am J Infect Control ; 50(8): 871-877, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000219

ABSTRACT

BACKGROUND: In the context of the SARS-CoV-2 pandemic, reuse of personal protective equipment, specifically that of medical face coverings, has been recommended. The reuse of these typically single-use only items necessitates procedures to inactivate contaminating human respiratory and gastrointestinal pathogens. We previously demonstrated decontamination of surgical masks and respirators contaminated with infectious SARS-CoV-2 and various animal coronaviruses via low concentration- and short exposure methylene blue photochemical treatment (10 µM methylene blue, 30 minutes of 12,500-lux red light or 50,000 lux white light exposure). METHODS: Here, we describe the adaptation of this protocol to the decontamination of a more resistant, non-enveloped gastrointestinal virus and demonstrate efficient photodynamic inactivation of murine norovirus, a human norovirus surrogate. RESULTS: Methylene blue photochemical treatment (100 µM methylene blue, 30 minutes of 12,500-lux red light exposure) of murine norovirus-contaminated masks reduced infectious viral titers by over four orders of magnitude on surgical mask surfaces. DISCUSSION AND CONCLUSIONS: Inactivation of a norovirus, the most difficult to inactivate of the respiratory and gastrointestinal human viruses, can predict the inactivation of any less resistant viral mask contaminant. The protocol developed here thus solidifies the position of methylene blue photochemical decontamination as an important tool in the package of practical pandemic preparedness.


Subject(s)
Decontamination , Masks , Methylene Blue , Norovirus , Animals , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Masks/virology , Methylene Blue/toxicity , Mice , SARS-CoV-2
17.
J Biophotonics ; 15(10): e202200068, 2022 10.
Article in English | MEDLINE | ID: covidwho-1971275

ABSTRACT

The spread of SARS-CoV-2 has resulted in the shortage of filtering facepiece respirators (FFRs). As a result, the use of ultraviolet (UV) irradiation for disinfection and reuse of FFRs has been the topic of much investigation. In this article, a mathematical model is developed based on Kubelka's theory to determine light transmission in multilayer materials, such as N95 masks. Using this model, the predicted UV transmittance and absorbance of a N95 mask layers were found to be in close agreement with the experimental values. In addition, when the mask was exposed to UV equally from both surfaces, the estimated minimum UV irradiance inside the N95 mask was 14.5% of the incident irradiance, suggesting a significant degree of light penetration. The proposed model provides a simple and practical methodology for the design and use of UV decontamination equipment for FFRs and other multilayer materials.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Ultraviolet Rays , Ventilators, Mechanical
18.
Photochem Photobiol Sci ; 21(11): 1915-1929, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1943884

ABSTRACT

As part of efforts to combat the Covid-19 pandemic and decrease the high transmissibility of the new coronavirus, SARS-CoV-2, effective inactivation strategies, such as UV-C decontamination technologies, can be reliably disseminated and well-studied. The present study investigated the susceptibility of a high viral load of SARS-CoV-2 in filtering facepiece respirators (FFR) N95, surgical mask, cotton fabric mask and N95 straps under three different doses of UV-C, applying both real-time PCR (qPCR) and plaque formation assays to quantify viral load reduction and virus infectivity, respectively. The results show that more than 95% of the amount of SARS-CoV-2 RNA could be reduced after 10 min of UV-C exposure (0.93 J cm-2 per side) in FFR N95 and surgical masks and, after 5 min of UV-C treatment (0.46 J cm-2 per side) in fabric masks. Furthermore, the analysis of viable coronaviruses after these different UV-C treatments demonstrated that the lowest applied dose is sufficient to decontaminate all masks ([Formula: see text] 3-log10 reduction of the infective viral load, > 99.9% reduction). However, for the elastic strap of N95 respirators, a UV-C dose three times greater than that used in masks (1.4 J cm-2 per side) is required. The findings suggest that the complete decontamination of masks can be performed effectively and safely in well-planned protocols for pandemic crises or as strategies to reduce the high consumption and safe disposal of these materials in the environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Masks , N95 Respirators , COVID-19/prevention & control , RNA, Viral , Decontamination/methods
19.
Food Environ Virol ; 14(3): 304-313, 2022 09.
Article in English | MEDLINE | ID: covidwho-1935880

ABSTRACT

The experience of COVID19 pandemic has demonstrated the real concern of biological agents dispersed in the air and surfaces environments. Therefore, the need of a fast and large-scale disinfection method has arisen for prevention of contagion. COUNTERFOG® is an innovative technology developed for large-scale decontamination of air and surfaces. The objective of this study is to assess experimentally the effectiveness of COUNTERFOG® in disinfecting viral-contaminated surfaces. We also aim to measure the necessary time to disinfect said surfaces. Stainless steel surfaces were contaminated with bacteriophage φ29 and disinfected using COUNTERFOG® SDR-F05A+, which uses a sodium hypochlorite solution at different concentrations and for different exposure times. A log reduction over 6 logs of virus titer is obtained in 1 min with 1.2% sodium hypochlorite when the application is direct; while at a radial distance of 5 cm from the point of application the disinfection reaches a reduction of 5.5 logs in 8 min. In the same way, a higher dilution of the sodium hypochlorite concentration (0.7% NaOCl) requires more exposure time (16 min) to obtain the same log reduction (> 6 logs). COUNTERFOG® creates, in a short time and at a distance of 2 m from the point of application, a thin layer of disinfectant that covers the surfaces. The selection of the concentration and exposure time is critical for the efficacy of disinfection. These tests demonstrate that a concentration between 0.7- 1.2% sodium hypochlorite is enough for a fast and efficient ɸ29 phage inactivation. The fact that ɸ29 phage is more resistant to disinfection than SARS-CoV-2 sustains this disinfection procedure.


Subject(s)
Bacteriophages , COVID-19 , Disinfectants , Decontamination/methods , Disinfectants/pharmacology , Disinfection/methods , Humans , SARS-CoV-2 , Sodium Hypochlorite/pharmacology
20.
J Med Virol ; 94(10): 4654-4668, 2022 10.
Article in English | MEDLINE | ID: covidwho-1905896

ABSTRACT

Given the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as witnessed early in the coronavirus disease 2019 (COVID-19) pandemic, concerns arose with the existing methods for virus disinfection and decontamination. The need for SARS-CoV-2-specific data stimulated considerable research in this regard. Overall, SARS-CoV-2 is practically and equally susceptible to approaches for disinfection and decontamination that have been previously found for other human or animal coronaviruses. The latter have included techniques utilizing temperature modulation, pH extremes, irradiation, and chemical treatments. These physicochemical methods are a necessary adjunct to other prevention strategies, given the environmental and patient surface ubiquity of the virus. Classic studies of disinfection have also allowed for extrapolation to the eradication of the virus on human mucosal surfaces by some chemical means. Despite considerable laboratory study, practical field assessments are generally lacking and need to be encouraged to confirm the correlation of interventions with viral eradication and infection prevention. Transparency in the constitution and use of any method or chemical is also essential to furthering practical applications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Disinfection/methods , Humans , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL